Abstract

At the present, spatial lifting systems are usually calculated numerically using linear approximation. However, the practical application of such systems at moderate and large angles of incidence requires new approaches that allow for various nonlinear effects such as large disturbances, flow separation, and jumps in entropy across shock waves. The existing investigations [3, 4] generally cover only simple systems (bodies of revolution, wings, and so on). Here, a numerical method is proposed for investigating supersonic flows past complicated spatial systems. The method extends and continues the well-known methods widely used to solve analogous problems in subsonic aerodynamics [5, 6]. Some examples of the computation of the aerodynamic parameters for flows past wings and spatial lifting systems are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.