Abstract

Three-dimensional supersonic turbulent flow in the presence of symmetric transverse injection of round jets through slots in the walls is studied numerically. The simulation is based on Favre averaged Navier-Stokes equations solved using the Beam-Warming method. The influence of the ratio of the pressure in the jet to that in the flow (pressure ratio) on the spatial interaction of the injected jet with the oncoming flow is studied. Experimental pressure distributions on the wall near the jet approximated by curvilinear closed ellipses are reproduced numerically. The mechanism of the formation of two symmetric vortices in the mixing layer between the jet and the oncoming flow is studied. The results of the calculations are found to be in satisfactory agreement with the experimental dependence of the length of the separation zone on the pressure ratio of the jet to the flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.