Abstract

AbstractA numerical study was conducted to investigate the fate of solute in a laboratory beach in response to waves and tides. A new temporal upscaling approach labeled “net inflow” was introduced to address impacts of waves on solute transport within beaches. Numerical simulations using a computational fluid dynamic model were used as boundary conditions for the two‐dimensional variably saturated flow and solute transport model MARUN. The modeling approach was validated against experimental data of solute transport due to waves and tides. Exchange fluxes across the beach face and subsurface solute transport (e.g., trajectory, movement speed, and residence time) were quantified. Simulation results revealed that waves increased the exchange fluxes, and engendered a wider exchange flux zone along the beach surface. Compared to tide‐only forcing, waves superimposed on tide caused the plume to be deeper into the beach, and to migrate more seaward. The infiltration into the beach was found to be directly proportional to the general hydraulic gradient in the beach and inversely proportional to the matrix retention (or capillary) capacity. The simulations showed that a higher inland water table would attenuate wave‐caused seawater infiltration, which might impact beach geochemical processes (e.g., nutrient recycle and redox condition), especially at low tide zone. The concept of biochemical residence time maps (BRTM) was introduced to account for the net effect of limiting concentration of chemicals on biochemical reactions. It was found that waves shifted the BRTMs downward and seaward in the beach, and subsequently they engendered different biochemical conditions within the beach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.