Abstract
Increasingly sophisticated techniques are being developed for the manufacture of functional nanomaterials. A growing interest is also developing in magnetic nanofluid coatings which contain magnetite nanoparticles suspended in a base fluid and are responsive to external magnetic fields. These nanomaterials are “smart” and their synthesis features high-temperature environments in which radiative heat transfer is present. Diffusion processes in the extruded nanomaterial sheet also feature Soret and Dufour (cross) diffusion effects. Filtration media are also utilized to control the heat, mass and momentum characteristics of extruded nanomaterials and porous media impedance effects arise. Magnetite nanofluids have also been shown to exhibit hydrodynamic wall slip which can arise due to non-adherence of the nanofluid to the boundary. Motivated by the multi-physical nature of magnetic nanomaterial manufacturing transport phenomena, in this paper, we develop a mathematical model to analyze the collective influence of hydrodynamic slip, radiative heat flux and cross-diffusion effects on transport phenomena in ferric oxide ([Formula: see text]-water) magnetic nanofluid flow from a nonlinear stretching porous sheet in porous media. Hydrodynamic slip is included. Porous media drag is simulated with the Darcy model. Viscous magnetohydrodynamic theory is used to simulate Lorentzian magnetic drag effects. The Rosseland diffusion flux model is employed for thermal radiative effects. A set of appropriate similarity transformation variables are deployed to convert the original partial differential boundary value problem into an ordinary differential boundary value problem. The numerical solution of the coupled, multi-degree, nonlinear problem is achieved with an efficient shooting technique in MATLAB symbolic software. The physical influences of Hartmann (magnetic) number, Prandtl number, Richardson number, Soret (thermo-diffusive) number, permeability parameter, concentration buoyancy ratio, radiation parameter, Dufour (diffuso-thermal) parameter, momentum slip parameter and Schmidt number on transport characteristics (e.g. velocity, nanoparticle concentration and temperature profiles) are investigated, visualized and presented graphically. Flow deceleration is induced with increasing Hartmann number and wall slip, whereas flow acceleration is generated with greater Richardson number and buoyancy ratio parameter. Temperatures are elevated with increasing Dufour number and radiative parameter. Concentration magnitudes are enhanced with Soret number, whereas they are depleted with greater Schmidt number. Validation of the MATLAB computations with special cases of the general model is included. Further validation with generalized differential quadrature (GDQ) is also included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.