Abstract
The aim of this contribution is to present recent results on numerical modelling of non-Newtonian flow in compliant stenosed vessels with application in hemodynamics. We consider two models of shear-thinning non-Newtonian fluids and compare them with the Newtonian model. For the structure problem, the generalized string equation for radial symmetric tubes is used and extended to a stenosed vessel. The global iterative approach to approximate the fluid–structure interaction is used. Finally, we present numerical experiments for some non-Newtonian models, comparisons with the Newtonian model and the results for hemodynamic wall parameters such as the wall shear stress and the oscillatory shear index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.