Abstract

This paper presents an extension of the local second gradient model to multiphasic materials (solids particles, air, water) and including the cavitation phenomenon. This new development was made in order to model the response of saturated dilatant materials under deviatoric stress and undrained conditions and possibly, in future, the behavior of unsaturated soils. Some experiments have showed the significance of cavitation for the hydromechanical response of materials. However, to date and as far as we are aware, no attempt was made to implement the cavitation as a phase change mechanism with a control of pore pressure. The first part of the results section explores the effects of permeability, dilation angle and loading rate on the stability of shear bands during a localization event. The reasons underlying the band instability are discussed in detail, which helps defining the conditions required to maintain stability and investigating the effects of cavitation without parasite effect of materials parameters or loading rate. The model showed that, if a uniform response is obtained, cavitation triggers localization. However, in case of a localized solution, cavitation follows the formation of the shear band, with the two events being quite distinct.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call