Abstract

In the present study, the effect of slip boundary condition on the rotating electroosmotic flow (EOF) of Oldroyd-B fluid in a microchannel under high zeta potential is considered numerically. The potential distribution of the electric double layer (EDL) is acquired by solving the nonlinear Poisson-Boltzmann equation. The numerical solution of velocity profile is obtained by using a finite difference method. The effects of rotating Reynolds number, electric width, viscous parameter, slip parameter etc on velocity and boundary stress for Oldroyd-B fluid EOF are discussed, which show that the slip boundary effect can reduce the boundary stress and promote the development of flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.