Abstract

Cemented paste backfill (CPB) as a solid waste treatment technology that prepares tailings as aggregate into a highly concentrated slurry to be transported to the underground mining area, is now widely used in mines. However, the pipeline resistance loss and erosion wear during CPB slurry transportation considering the coupling effect of inlet velocities, viscosities, and particle sizes have not yet been well evaluated and analyzed. Hence, the CFD-based three-dimensional network simulation of CPB slurry flow in an L-shaped pipe at different combinations of the three parameters was developed using COMSOL Multiphysics software. The results showed that the pipe resistance loss was most affected by the inlet velocity and viscosity, with the minimum pipe resistance loss occurring at an inlet velocity of 1.5 m/s, a viscosity of 2.0 Pa·s, and a particle size of 150 μm. In particular, pipe erosion wear was severest at the bend and was positively correlated with inlet velocity and particle size, and negatively correlated with slurry viscosity, with maximum pipe erosion wear occurring at an inlet velocity of 3.5 m/s, a viscosity of 3.0 Pa·s, and a particle size of 2000 μm. The findings would be important for the design of the CPB pipeline transportation, which will improve the safety and economic level of a mine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call