Abstract

The transport of ions in nanofluidic systems, specifically the rectified ion transport or the ionic diode phenomenon occurring in the presence of asymmetrical geometry and/or charge distribution, has drawn considerable attention due to its relevance in energy conversion and biosensing applications. However, previous numerical research has frequently overlooked the concurrent liquid flow within these systems, even though multiple experimental studies have highlighted intriguing flow patterns in ionic diode configurations. In the present study, we employ comprehensive numerical simulations to probe the influence of geometrical or charge asymmetry in a nanofluidic system on electroosmotic flow and ion transport. These simulations employ the Poisson–Nernst–Planck equation in conjunction with the Navier–Stokes equation. Our findings reveal that even when the current rectification trend is consistent between conical and straight nanopores, charge asymmetry and geometric asymmetry can generate significant variations in the rectification effects of electroosmotic flow. Furthermore, our research indicates that the direction of ion rectification and flow rectification can be independently manipulated by utilizing charge asymmetry in conjunction with geometric asymmetry, thereby facilitating advanced control of ions and flows within nanofluidic systems. Collectively, our findings contribute to a more profound understanding of the mechanisms underlying osmotic flow rectification and propose a novel approach for developing efficient ion and flow rectification systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.