Abstract

Combustion of polypropylene (PP) in a high-temperature, low-oxygen oxidizer enriched with H2O and CO2 in stagnation-point flow was studied numerically to explore fundamental characteristics of polymer incineration under the condition of high-temperature air combustion (HiTAC). The detailed chemistry of propene as a decomposition gas was used for the calculation. Two typical gas radiation models, i.e., the optically thin model (OTM) and the statistical narrow-band (SNB) model, were employed to clarify the effect of gas radiation on PP combustion as well as the validity of the use of these models under HiTAC conditions because the H2O and CO2 included in the burnt gas recirculated in HiTAC furnaces are highly radiative species. Results showed that, under HiTAC conditions, calculations using OTM overpredicts regression rates compared with those using SNB, indicating that OTM is not suitable for use with polymer combustion under HiTAC conditions, while the differences of these gas radiation models were slight when ordinary air at high temperature was used as an oxidizer. It was also shown that when SNB was used, CO2 enrichment in the oxidizer hardly enhanced the regression because CO2 near the PP surface behaves as a barrier against the radiative heat flux. The most effective condition to increase the regression rate is to maintain a higher concentration of H2O in the high-temperature oxidizer so as to enhance the gas radiation to the PP surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.