Abstract
The ballistic performance of armchair graphene nanoribbon (GNR) field effect transistors (FET) with doped source and drain at different lengths of the channel are studied by self-consistently solving the non-equilibrium Green's Function (NEGF) transport equation in an atomistic basis set with a 3-D Poisson equation. The I– V characteristics of the simulated model manifests the ballistic top of the barrier and tunneling under the barrier currents in different lengths of the intrinsic channel for two different doping of the source and drain extensions of the device. The length-dependent maximum cut-off frequency is derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.