Abstract

Progressive collapse is a chain reaction of failures propagating throughout a portion of the structure disproportionate to the original local failure occurring when a sudden loss of a critical load‐bearing element initiates a structural element failure, eventually resulting in partial or full collapse of the structure. Both General Services Administration (GSA) and United States Department of Defense (DoD) guidelines incorporate a threat-independent approach to progressive collapse analysis. Therefore, there is an international trend for updating structural design requirements to explicitly design structures to resist progressive collapse. This paper presents simple analytical approach for evaluating progressive collapse potential of typical concrete buildings, comparing four methods for progressive collapse analysis by studying 5 and 10-story intermediate moment-resistant reinforced concrete frame buildings, employing increasingly more complex analytical procedures: linear-elastic static, nonlinear static, linear-elastic dynamic, and nonlinear dynamic methodologies. Each procedure is thoroughly investigated and its common shortcomings are identified. The evaluation uses current GSA progressive collapse guidelines and can be used in routine design by practicing engineers. These analyses for three column-removal conditions are performed to evaluate the behavior of RC buildings under progressive collapse. Based on obtained findings, dynamic analysis procedures -easy to perform for progressive collapse determination- yielded more accurate results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call