Abstract

A novel nanometeric plasmonic filter comprised of double-sided eight stub resonators side-coupled with a metal-isolator-metal waveguide is proposed and demonstrated numerically by the finite element method. The numerical results show that the four transmittance peaks in a transmission spectrum range from 400 nm to 2000 nm can be achieved due to the electromagnetically-induced-transparency-like spectral responses between every two adjacent stub resonators with detuned cavity length. Based on the magnetic field distributions from the two dimensional model, the physical origins of transmittance peaks and dips are clarified by phase analysis of Fabry-Perot resonance effect. In addition, the central wavelengths of transmittance peaks can be tuned by adjusting the cavity length of each stub resonator, which means the waveguide filter could be utilized to develop ultracompact and tunable narrowband photonic filters for high integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.