Abstract

Extensive Monte Carlo simulations are performed in order to evaluate both the local (straight theta(l)) and global (straight theta(g)) persistence exponents in the Ziff-Gulari-Barshad (ZGB) [Phys. Rev. Lett. 56, 2553 (1986)] irreversible reaction model. At the second-order irreversible phase transition (IPT) we find that both the local and the global persistence exhibit power-law behavior with a crossover between two different time regimes. On the other hand, at the ZGB first-order IPT, active sites are short lived and the persistence decays more abruptly; it is not clear whether it shows power-law behavior or not. In order to analyze universality issues, we have also studied another model with absorbing states, the contact process, and evaluated the local persistence exponent in dimensions from 1 to 4. A striking apparent superuniversality is reported: the local persistence exponent seems to coincide in both one- and two-dimensional systems. Some other aspects of persistence in systems with absorbing states are also analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call