Abstract

This paper presents the results of studies on the outlet boundary conditions for turbulent internal flow simulations. Several outlet boundary conditions have been investigated by applying the National Combustion Code (NCC) to the configuration of a LM6000 single injector flame tube. First of all, very large eddy simulations (VLES) have been performed using the partially resolved numerical simulation (PRNS) approach, in which both the nonlinear and linear dynamic subscale models were employed. Secondly, unsteady Reynolds averaged Navier- Stokes (URANS) simulations have also been performed for the same configuration to investigate the effects of different outlet boundary conditions in the context of URANS. Thirdly, the possible role of the initial condition is inspected by using three different initial flow fields for both the PRNS/VLES simulation and the URANS simulation. The same grid is used for all the simulations and the number of mesh element is about 0.5 million. The main purpose of this study is to examine the long-time behavior of the solution as determined by the imposed outlet boundary conditions. For a particular simulation to be considered as successful under the given initial and boundary conditions, the solution must be sustainable in a physically meaningful manner over a sufficiently long period of time. The commonly used outlet boundary condition for steady Reynolds averaged Navier-Stokes (RANS) simulation is a fixed pressure at the outlet with all the other dependent variables being extrapolated from the interior. The results of the present study suggest that this is also workable for the URANS simulation of the LM6000 injector flame tube. However, it does not work for the PRNS/VLES simulation due to the unphysical reflections of the pressure disturbances at the outlet boundary. This undesirable situation can be practically alleviated by applying a simple unsteady convection equation for the pressure disturbances at the outlet boundary. The numerical results presented in this paper suggest that this unsteady convection of pressure disturbances at the outlet works very well for all the unsteady simulations (both PRNS/VLES and URANS) of the LM6000 single injector flame tube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.