Abstract

This theoretical analysis reports on the non-isothermal calendering process of micropolar-Casson fluid and studies the viscoplastic and microrotation effects by utilizing the lubrication approximation (LAT). Exact dimensionless velocity and pressure gradient solutions are achieved. Then a numerical integration technique determined other mechanical quantities. Implementing the finite difference approximations resolved the energy expression. Graphs show how material parameters influence the pressure, pressure gradient, leave-off distance, temperature distribution, force, and power function. Temperature distribution increases with increased coupling number N and decreased Casson parameter [Formula: see text]. Force and power function increase with increased coupling number and decreased Casson parameter. Both Casson and coupling number control the pressure distribution and exiting sheet thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call