Abstract

Laser interstitial thermal therapy is one of the best methods for tumor treatment. Quality of treatment is highly influenced by the way of temperature control that depends strongly upon the living tissue thermal properties. One-dimensional dual-phase-lag (DPL) in spherical coordinate system numerically has been investigated for bioheat transfer during laser treatment in living biological tissues, which contain tumoral and normal layers. Various behaviors of heat transfer models such as wave, wavelike and diffusion are studied by adjusting the relaxation parameters. Effect of different phase lags values of the heat flux and the temperature gradient and thermal diffusivity on the behavior of heat transfer overshooting phenomenon is also investigated as well. Results indicate variation of the time lag and the thermal diffusivity of the normal and tumoral tissues. Also it has cleared that the geometrical conditions have significant effects upon the thermal response and overshooting phenomenon in biological tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.