Abstract

Natural convection in an annular space provided with metal foam fins attached to the inner cylinder is studied numerically. The metal foam fins made of copper were inserted in different axial sections with three fins in each section. The temperature of the inner cylinder is kept constant while the annular outer surface is adiabatic. The thickness effect of the inner pipe wall was considered. Naiver Stokes equation with Boussinesq approximation is used for the fluid regime while Brinkman-Forchheimer Darcy model is used for metal foam. In addition, the local thermal non-equilibrium condition in the energy equation of the porous media is presumed. The effect of Rayleigh number and number of foam fins in the axial direction, on fluid flow and heat transfer characteristics, were examined. The current model was valid with the available published results and good agreement is noticed. Results showed that as the Rayleigh number increases the dominated of convection mode increases and average Nusselt increases. It was found that at Rayleigh of 106 Nusselt reached its higher value which is 4.6 for the case of adding seven axial metal foams. A comparison between adding foam fins and copper fins was established for a range of Rayleigh numbers between 104 and 106. It showed a good enhancement in Nusselt number and the greatest enhancement percentage was 45.9% at Rayleigh equal 106 for the case of using seven sections of foam fins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call