Abstract

Natural convection in a differentially heated cavity has been carried out under large temperature gradient. The study has been performed by direct simulations using a two-dimensional finite volume numerical code solving the time-dependent Navier-Stokes equations under the Low Mach Number approximation. The LMN model constitutes an important numerical problem for low speed flows. It is based on the filtering of acoustic waves from the complete Navier-Stokes equations. Various simulations were conducted including constant or variable transport coefficients and both small and large temperature differences. A comparison between an incompressible code based on the Boussinesq approximation and the LMN compressible code shows that the incompressible model is not sufficient to simulate natural convective flow for large temperature differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.