Abstract
Two-dimensional steady laminar natural convection of a viscoelastic fluid represented by generalized second-grade fluid model in a square enclosure is studied. The cavity is submitted at its vertical sides to a uniform density of heat flux while the horizontal walls are insulated, without slipping conditions at all the solid boundaries. The governing conservation and constitutive equations with the corresponding boundary conditions are solved by finite volume method in a collocated grid system. The contributions of shear rate dependent and elastic characteristics of the viscoelastic fluid are investigated on momentum and heat transport. The effects of elastic number (E) in the range 0 - 1 on heat transfer and fluid motion are interpreted for a power-law index (n) in the range 1.4 - 0.6 and nominal values of Rayleigh number (Ra) range of 103 to 105.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.