Abstract

In order to reveal the mechanisms of heat transfer enhancement in nanofluids from the flow characteristics, this paper firstly used LES (Large eddy simulation)–Lagrange method to simulate the turbulent flow of nanofluids through a straight circular tube. It has been observed that nanoparticles would move up and down and sideways besides main flowing. The turbulent characteristics of nanofluids have been changed greatly in comparison with pure water: the turbulent intensity and Reynolds stress are enhanced obviously; there are more vortexes in the flow field. These flow characteristics of nanofluids can effectively strengthen the transport of momentum, mass and energy, which is the main reason for heat transfer enhancement in nanofluids. It is also found that nanofluids containing smaller diameter nanoparticles have higher turbulent intensity and flow activity. The flow characteristics of nanofluids are sensitive to the changes of smaller diameter nanoparticle size. While using different nanoparticle materials, the flow characteristics of nanofluids have a little change. At last, to verify the aforesaid views, the flow behaviors of nanofluids in the near wall region and main flow region have been simulated by molecular dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.