Abstract

An analytical investigation of the onset of nanofluid thermo-bioconvection in a fluid saturated by porous media containing gravitactic and nanoparticles microorganisms subjected to a vertical throughflow is presented. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. The fluid is stimulated with modified Brinkman model, normal mode analysis and six-term Galerkin methods are used to solve the governing equations. The combined effects of vertical throughflow, nanoparticles, gravitactic microorganisms, and porosity have been taken into account. The effects of bioconvection Rayleigh number, bioconvection Péclet number, nanoparticle Rayleigh number, Péclet number, bioconvection Lewis number, and porosity on critical thermal Rayleigh number have been examined. The analysis leads that critical wave number is the function of bioconvection parameters, nanofluid parameters and throughflow parameters. It is also found that vertical throughflow disturbs the formation of bioconvection pattern which are necessary for the development of bioconvection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.