Abstract

Numerical studies of microscale shock-vortex interaction were conducted by particle-based direct simulation of Monte Carlo (DSMC). The enstrophy is found to be increased in the strong microscale shock-vortex interaction, which is not observed in the previous DSMC studies within the limited cases. Investigations also show that the increase of the enstrophy results in an increase in dissipation rate during the strong interaction. The incoming Mach number, vortex size, and vortex Mach number turn out to play a critical role in the strength of interaction, which in turn govern the change in the dissipation rate and the increase or decrease in enstrophy during the microscale shock-vortex interaction. It is also observed that the incoming Mach number is the most dominant parameter, followed by vortex size and vortex Mach number, during the microscale shock-vortex interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.