Abstract
Surface wettability plays a vital role in various natural phenomena and technical applications, such as coating, printing, membrane technology, microfluidic devices, and porous media flow. We numerically investigate the dynamics and stability of liquid–liquid dispersion flowing in a microfluidic channel with heterogeneous surface wettability, using a conservative phase-field lattice Boltzmann method. First, we validate the implementation of the wetting boundary conditions. We then perform three-dimensional simulations of a single drop motion immersed in another immiscible liquid in a square microchannel with alternating surface wettability: hydrophilic, hydrophobic, and again hydrophilic sections. The viscosity of the dispersed liquid (oil) is ten times higher than that of the continuous one (water), while the two liquids have equal densities. Depending on the drop length and Capillary number, calculated based on the drop velocity and the dynamic viscosity of the continuous phase, four different flow patterns are observed when the drop passes through the hydrophobic section. The distinct flow patterns include passing without any changes in drop shape or dynamics, adhesion of the dispersed liquid to the walls, phase inversion (i.e., water becomes the dispersed phase), and drop breakage. These outcomes are in close agreement with the experimental data. A detailed explanation of the choice of the numerical parameters is presented. The critical aspect of capturing the observed drop behavior is introducing an intervening thin-film of the continuous phase of at least three diffuse interface thicknesses (between the drop and channel walls).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.