Abstract

<sec>Metallic semiconductor nanolaser, as an ultra-small light source, has been increasingly attractive to researchers in last decade. It can have wide potential applications such as in photonic integrated circuits, on-chip interconnect, optical communications,etc. One obstacle to miniaturization of the laser size is that the loss increases rapidly with the cavity volume decreasing. In previous studies, a type of Fabry-Perot cavity with capsule-shaped structure was investigated and demonstrated both numerically and experimentally, showing that its cavity loss is reduced dramatically in contrast to the scenario of conventional rectangular cavities. However, when the cavity size is reduced down to nanoscale, capsule-shaped structure surfers high loss. To overcome this difficulty, in this paper, a novel type of double-concave cavity structure for metallic semiconductor nanolaser in a 1.55 μm wavelength range is proposed and numerically studied. The proposed structure consists of InGaAs/InP waveguide structure encapsulated by metallic clad, and has a cylindrical reflection end face and concave curved sidewalls. </sec><sec>The cylindrical reflection end face can push the resonant mode into the cavity center and reduce the optical field overlap with metallic sidewalls, which can reduce the metallic loss. The curved-sidewalls topologically reduce the electric field component perpendicular to the sidewalls, and thus reducing the plasmonic loss. By optimizing the waist width of the double-concave cavity structure, the radiation loss can be effectively reduced, resulting in the improvement of cavity quality factor and the decrease of threshold current. Finite-difference time-domain simulations are conducted to investigate the properties of the proposed cavity structures such as resonant mode distribution, cavity quality factor, confinement factor, threshold gain and threshold current in this paper. The numerical results show that the double-concave cavity laser with cavity volume as small as 0.258 <i>λ</i><sup>3</sup> increases 24.8% of cavity quality factor and reduces 67.5% of threshold current, compared with the conventional capsule-shaped one, demonstrating an effective improvement of metallic nanolaser. With those advantages, the proposed structure can be used for realizing the ultra-small metallic semiconductor nanolasers and relevant applications.</sec>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.