Abstract

Engineering applications for honeycomb sandwich structures (HSS) are well recognized. Heterogeneous structures have been created using polyetheretherketone (PEEK) material, glass fiber-reinforced PEEK (GF-PEEK), and carbon fiber-reinforced PEEK (CF-PEEK) to further enhance the load-carrying capacity, stiffness, and impact resistance of HSS. In this study, we investigated the low-velocity impact response of HSS using numerical simulation. Our findings demonstrate that the choice of construction material significantly affects the impact resistance and structural stability of the HSS. We found that using fiber-reinforced PEEK significantly enhances the impact resistance of the overall structure, with GF-PEEK identified as the more appropriate face sheet material for the composite HSS based on a comparative study of load-displacement curves. Analysis of the plastic deformation of the honeycomb core, in combination with the stress and strain distribution of the composite HSS after low-velocity impact, indicates that CF-PEEK face sheets cause more noticeable damage to the core, resulting in evident plastic deformation. Additionally, we discovered that the use of fiber-reinforced materials effectively reduces deflection during low-velocity dynamic impact, particularly when both the face sheet and honeycomb core of the HSS are composed of the same fiber-reinforced PEEK material. These results provide valuable insights into the design and optimization of composite HSS for impact resistance applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.