Abstract

A helical flagellum filament can be modeled as a rigid helix. Numerical simulations of the unsteady flow around a rigid, finite length rotating helix are performed to examine the characteristics of the hydrodynamic force exerted on the helix by the fluid medium. Newtonian and non-Newtonian fluid models are used. The Reynolds numbers of the flows simulated range between and Where appropriate, the calculated mean thrusts, obtained by using three different numerical solvers, are compared with that based on theoretical prediction. The simulated mean thrusts agree well with the theoretical predictions. Analyses show that hydrodynamic force variations, although of small amplitudes, are dominated by distinct discrete modes that are higher harmonics of the rotation frequency of the helix for the low-Reynolds number flows simulated. Simple correlations are developed for the dominant frequencies, where present, observed in the simulations of the helix with different sizes, rotation frequency, and fluid viscosity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.