Abstract

This paper investigates the effect of initial residual stress and prestrain on residual stresses due to laser shock peening for Alloy 600 using numerical simulation. For simulation, the strain rate dependent Johnson–Cook hardening model with a Mie–Grüneisen equation of state is used. Simulation results are compared with published experimental data, showing good agreement. It is found that the laser shock peening (LSP) process is more effective for higher initial tensile residual stress and for larger initial prestrain in terms of compressive stress at the near surface. However, the effective depth decreases with increasing initial tensile residual stress and initial prestrain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call