Abstract

Accurate numerical results are derived for transport properties of Kondo impurity systems with potential scattering and orbital degeneracy. Using the continuous-time quantum Monte Carlo (CT-QMC) method, static and dynamic physical quantities are derived in a wide temperature range across the Kondo temperature T_K. With strong potential scattering, the resistivity tends to decrease with decreasing temperature, in contrast to the ordinary Kondo effect. Correspondingly, the quasi-particle density of states obtains the antiresonance around the Fermi level. Thermopower also shows characteristic deviation from the standard Kondo behavior, while magnetic susceptibility follows the universal temperature dependence even with strong potential scattering. It is found that the t-matrix in the presence of potential scattering is not a relevant quantity for the Friedel sum rule, for which a proper limit of the f-electron Green's function is introduced. The optical theorem is also discussed in the context of Kondo impurity models with potential scattering. It is shown that optical theorem holds not only in the Fermi-liquid range but also for large energies, and therefore is less restrictive than the Friedel sum rule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.