Abstract

The present paper describes a computational study of laminar/turbulent and subsonic/supersonic horseshoe vortex systems generated by a cylindrical protuberance mounted on a flat plate. Various vortex structures are predicted and discussed. Low-speed laminar juncture flows are computed to determine the Reynolds number effect with the same incoming boundary-layer thickness. For a low subsonic laminar flow, the number of vortex arrays increases with the Reynolds number, in agreement with both experimental and numerical observations. Qualitative comparisons are made along with the computations, experimental observations, and analytical work. For incompressible flow, the relationships among pressure extrema, vorticity, and singular points in flow structure are discussed. A parametric study of the effect of the free-stream Mach number on the flow structure for laminar flow is conducted. The juncture flow when the incoming flow is turbulent and supersonic is computed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call