Abstract
The effect of main channel curvature on the flow pattern in river junctions is a complex and important issue. The 3-dimensional flow pattern in a river bend with a lateral or tributary channel is not only affected by the centrifugal force and pressure gradient but is also affected by the tributary channel’s momentum. Understanding this phenomenon requires extensive research: in this study the effect of 4 tributary junction angles, placed at a 45° angle from the beginning of the bend, is studied using SSIIM1 software. The effect of the junction angle on the vertical and transverse velocity profile, water level changes in the main channel, bed shear-stress distribution and secondary flow strength were evaluated. The results showed that by increasing the junction angle from 30° to 115° the streamwise velocity in the vicinity of the centre line and the inner wall of the bend increases. Increasing the junction angle also increases the separation zone dimensions, maximum bed shear stress, difference between the upstream and downstream water level in the junction and the secondary flow strength. Keywords: flow pattern, junction angle, 180 degree bend, SSIIM1 numerical model
Highlights
IntroductionThis complexity is because of their turbulence and intense 3-dimensional nature and because of their topography and depth variations
Water flow in rivers, especially meandering rivers, is very complex
In this research the SSIIM1 model was used to evaluate the effect of the tributary junction angle on the flow pattern in a 180° bend
Summary
This complexity is because of their turbulence and intense 3-dimensional nature and because of their topography and depth variations. River junctions in natural meanders increase the flow pattern’s complexity. The effect of bending curvature on flow dynamics and sediment in channels has received a considerable amount of attention, only limited information about the effect of bending curvature on flow patterns in river junctions is available, and there have been very few studies considering river junctions in river bends. Roberts (2004) did an experimental and numerical investigation on river meanders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.