Abstract

Magnetized liner inertial fusion experiments on the Z accelerator suffer from magneto-Rayleigh–Taylor instabilities (MRTI) that compromise integrity of the imploding cylindrical liner, limiting achievable fusion fuel conditions and ultimately reducing magneto-inertial fusion target performance. Dynamic screw pinches (DSP) provide a method to reduce MRTI in-flight via application of magnetic field line tension to the imploding liner outer surface. In contrast with z-pinches that drive implosions with an azimuthal magnetic field, dynamic screw pinches enforce an additional axial drive magnetic field component, making the overall drive magnetic field helical. As the liner implodes, cumulative MRTI development is reduced by dynamically shifting the orientation of the fastest growing instability modes. Three-dimensional magnetohydrodynamic simulations show that the DSP mechanism effectively stabilizes initially solid cylindrical liner implosions driven by Z-scale current pulses, indicating that MRTI mitigation increases with the ratio of axial to azimuthal drive magnetic field components (i.e., the drive field ratio). We also performed a spectral analysis of the simulated imploding density distributions, extracting wavelength and pitch angle of the simulated MRTI structures to study their dynamics during the implosion. Simulations of liners initially perturbed with drive-field-aligned sinusoidal structures indicate that MRTI mitigation in DSP implosions decreases with perturbation wavelength, once again suggestive of magnetic field line tension effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call