Abstract

In the present paper, numerical study of flow and heat transfer properties of RP-3 kerosene at liquid and supercritical conditions in an impingement model is conducted with renormalization group (RNG) k−ε turbulence model and a ten-species surrogate of kerosene. The independence of grids is first studied, and the numerical results are compared with experimental data for validation. Characteristics of flow and heat transfer of kerosene flow in the impingement model are studied with different inlet mass flow rates and different inlet temperatures. The velocity and temperature field show similar profile compared to that of air impingement. The heat transfer rates increase first with the increasing of inlet temperature and then decrease suddenly when the inlet temperature is 500 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call