Abstract
An efficient numerical scheme is described for the solution of certain types of nonlinear hyperbolic equations with an integral constraint which are used to model the Gunn effect in semiconductors with impurity capture. We analyze the stability and convergence properties of the scheme and present the results of numerical simulations. Depending on the value of the parameters defining the problem, a great variety of solutions are obtained, including periodic recycling of solitary waves and chaotic regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.