Abstract
In this study, the effect of hydrogen addition to DME/CH4 dual-fuel RCCI (Reactivity Controlled Compression Ignition) engine is investigated using three dimensional calculations coupled with chemical kinetics. A new reduced DME (Dimethyl Ether) oxidation mechanism is proposed in this study. With the addition of H2, the ignition time is advanced and the peak cylinder pressure is increased. The addition of hydrogen has a greater effect on the beginning stage of combustion than the later stages of combustion. The CH4 emission is reduced with the addition of H2. However, as the flame does not propagate throughout the charge, the CH4 emission is still high. The CO emission is reduced and most of the remaining CO is produced by the combustion of the premixed CH4. With the addition of hydrogen, NO emission is increased. The simulation shows that the final NOx emissions are significantly determined by the injection strategy and quantity of the pilot fuel during dual fuel operation conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.