Abstract

The mixing and combustion of cryogenic oxygen and methane in a shear coaxial injector operating under supercritical pressures are investigated numerically. The formulation accommodates full conservation laws and real-fluid thermodynamics and transport phenomena. The near -field fluid injection and mixing dynamics are characterized by the evolution of two mixing layers. The vigorous fluctuations generated from the inner mixing layer, which consists a string of large scale vortices emerging from the LOX post tip, provide a forcing on the outer shear layer. The formations of large structures do not follow the fundamental KelvinHelmholtz instability mechanism, but in a manner analogous to that produced at a backward-facing step. The effect of the momentum-flux ratio on the flow evolution is demonstrated. As the velocity of the methane stream increases, turbulent mixing is enhanced, and both the inner and outer potential cores are reduced. A diffusion dominated combustion occurs in the presence of large gradient of fluid pr operties. The work also identifies the flame anchoring mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.