Abstract

Heat and mass transfer have numerous industrial applications. The classical heat and mass transfer laws (Fourier and Fick laws) do not predict thermal and solute relaxation time phenomena. However, in this article, generalized modeling related to simultaneous heat and mass transfer in non-Newtonian fluid in the presence of chemical reaction and heat generation is presented and models are numerically solved by the finite element method (FEM). Hybrid nanoparticles A g and F e 3 O 4 are considered and novel correlations are inserted during numerical simulations. The present results have a good agreement with already published benchmark. Thermal relaxation time is the characteristics of the fluid due to which it avoids or tries to avoid the thermal changes. The fluid with thermal relaxation characteristic tries to restore the thermal equilibrium and hence the temperature of the fluid is decreased. The solute relation is incorporated in the concentration equation from generalized Fick's law and solute relaxation time has shown a decreasing tendency in the concentration field. The solute boundary layer region can be controlled via an increase in the solute relaxation parameter. Ohmic dissipation in hybrid nanofluid A g − F e 3 O 4 − Prandtl fluid) is stronger than that in mono nanofluid ( A g − Prandtl fluid). Hybrid nanofluid ( A g − F e 3 O 4 − Prandtl fluid) produces more heat due to Joule heating than that produced by mono nanofluid ( A g − Prandtl fluid).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.