Abstract

The objective of this paper is to numerically study the heat transfer and hydrodynamic performance of a graphene-based hybrid nanofluid flowing through a microchannel for electronics cooling applications. Different concentrations of Graphene-Platinum/water hybrid nanofluid were employed as coolants. The thermophysical properties used in this study were considered to be temperature-dependent. The microchannel was modeled as a porous media. The effect of nanoparticle volume concentration on thermal resistance, pressure drop, friction factor and ratio of heat transfer coefficient to pressure drop (Figure of merit) was analyzed and the plots were generated for different Reynolds numbers of the working fluid. The results pointed out that introduction of nanoparticles resulted in the lowering of thermal resistance. However, the pressure drop and friction factor increased. Figure of merit is found to be higher for higher concentrations of hybrid nanofluids compared to base fluid water. On analyzing the results, it was understood that the utilization of Graphene-Platinum/water hybrid nanofluid through microchannels can be highly effective in the laminar region. It also suggests that this graphene based nanofluid has excellent potential as a coolant to remove excess heat from miniature electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.