Abstract
The efficient and reliable approximation of convection-dominated problems continues to remain a challenging task. To overcome the difficulties associated with the discretization of convection-dominated equations, stabilization techniques and a posteriori error control mechanisms with mesh adaptivity were developed and studied in the past. Nevertheless, the derivation of robust a posteriori error estimates for standard quantities and in computable norms is still an unresolved problem and under investigation. Here we combine the Dual Weighted Residual (DWR) method for goal-oriented error control with stabilized finite element methods. By a duality argument an error representation is derived on that an adaptive strategy is built. The key ingredient of this work is the application of a higher order discretization of the dual problem in order to make a robust error control for user-chosen quantities of interest feasible. By numerical experiments in 2D and 3D we illustrate that this interpretation of the DWR methodology is capable to resolve layers and sharp fronts with high accuracy and to further reduce spurious oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.