Abstract

Construction of low-volume flexible pavements on low-strength subgrade poses design, construction, and maintenance challenges. While researchers have generally acknowledged the potential for geosynthetics as reinforcement material, they mainly focused on permanent deformation. Therefore, this paper presents a numerical study of low-volume flexible pavement reinforced with geotextile material under static loading to determine the improvement due to reinforcement based on three criteria: rutting performance, geosynthetic placement location, and base course thickness reduction. Based on the Finite Element Method (FEM), three-dimensional modeling using Abaqus/CAE software was performed. From the study, a significant decrease in rutting of up to 25.2% for the unreinforced pavement system was attained with geotextile reinforcement at base–subgrade and AC–base interfaces. The deflection response behavior of the pavement system is affected by the elastic modulus of the geosynthetic material, placement location, and the number of reinforcement layers. As a result of reinforcement, a base course thickness reduction of up to 30% was achieved without sacrificing the pavement’s structural integrity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.