Abstract

The elucidation of many physical problems in science and engineering is subject to the accurate numerical modelling of complex wave propagation phenomena. Over the last decades, high-order numerical approximation for partial differential equations has become a well-established tool. Here we propose and study numerically the implicit approximation in time of wave equations by a Galerkin–collocation approach that relies on a higher order space-time finite element approach. The conceptual basis is the establishment of a direct connection between the Galerkin method for the time discretization and the classical collocation methods, with the perspective of achieving the accuracy of the former with reduced computational costs provided by the latter in terms of less complex linear algebraic systems. For the fully discrete solution, higher order regularity in time is further ensured which can be advantageous for the discretization of multi-physics systems. The accuracy and efficiency of the variational collocation approach is carefully studied by numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.