Abstract

• Segregation of binary density particles in a split drum was studied. • The effects of sub-drum speed on segregation were analyzed. • The effects of split position on segregation dynamics were investigated. Driving and controlling the segregation in a rotary drum is both a theoretical and a practical challenge in powder technology. A novel horizontal split drum design composed of two reverse rotating sub-drums was explored to drive axial segregation of granular matter. DEM (Discrete Element Method) simulations were performed to study the particle dynamics and segregation performance of binary density particles in the split drum. Then, the effects of drum speed, the speed ratio of the two sub-drums, and the split position on the axial segregation were analyzed. It was found that true axial segregation occurred in the split drum and heavier particles tend to accumulate in the region near the split. An increase in drum speed can accelerate the segregation but it has no obvious influence on the final axial distribution of particles. The results obtained indicate when two sub-drums rotate at different speeds, the concentrated region of heavier particles moves towards the low-speed sub-drum. These findings could lead to new designs for a broad range of particle processing industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call