Abstract

In the present study, shock waves produced over different blunt bodies moving at Mach 2.0 at zero angle of attack have been captured and analysed using computational investigations. Forebodies of distinct bluntness (hemisphere, ellipse, and ogive) are adopted, and the effect of the forebody geometry on the flow parameters is investigated. The flow parameters such as shock stand-off distance and shock strength have been captured over various forebody geometries and correlated with the forebody drag coefficient. With the reduction in the forebody bluntness, the shock stand-off distance and the shock strength are found to be decreasing, resulting in a decrease in the forebody drag coefficient values. The effect of the free-stream supersonic Mach number over a typical blunt body (hemisphere) was also investigated. With increasing freestream Mach number, the shock wave generated ahead the blunt hemisphere moved closer to the forebody and an increase in the forebody drag was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.