Abstract

A numerical study is presented for an axisymmetric laminar jet impingement on a confined disk, with the spent fluid being collected through an annual channel that is concentric with the nozzle. In this study, parametric variations were made of the dimensionless separation distance between the nozzle exit and the impingement surface, of the ratio of the diameter of the impingement surface to the nozzle diameter, and of the Reynolds number. The flow field is characterized by two recirculation zones, one adjacent to the nozzle exit and the other near the confining wall. The local heat transfer distribution on the impingement surface exhibits an off-axis maximum and a local minimum near the confining wall. The nozzle separation distance has an effect on surface heat transfer only for configurations with closet confinement. The thermal boundary condition on the impingement surface is found to have little effect on the total heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.