Abstract

Fisher's equation, which describes a balance between linear diffusion and nonlinear reaction or multiplication, is studied numerically by the Sinc collocation method. The derivatives and integrals are replaced by the necessary matrices, and a system of algebraic equations is obtained to approximate solution of the problem. The error in the approximation of the solution is shown to converge at an exponential rate. Numerical examples are given to illustrate the accuracy and the implementation of the method, the results show that any local initial disturbance can propagate with a constant limiting speed when time becomes sufficiently large. Both the limiting wave fronts and the limiting speed are independent of the initial values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.