Abstract

We present numerical studies of fermion and boson models with random all-to-all interactions (the SYK models). The high temperature expansion and exact diagonalization of the $N$-site fermion model are used to compute the entropy density: our results are consistent with the numerical solution of $N=\infty$ saddle point equations, and the presence of a non-zero entropy density in the limit of vanishing temperature. The exact diagonalization results for the fermion Green's function also appear to converge well to the $N=\infty$ solution. For the hard-core boson model, the exact diagonalization study indicates spin glass order. Some results on the entanglement entropy and the out-of-time-order correlators are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.