Abstract

Suppressing Fresnel reflections from dielectric boundaries using periodic and random antireflection structured surfaces (ARSSs) has been vigorously studied as an alternative to thin film coatings for high-power laser applications. A starting point in the design of ARSS profiles is effective medium theory (EMT), approximating the ARSS layer with a thin film of a specific effective permittivity, which has features with subwavelength transverse-scale dimensions, independent of their relative mutual positions or distributions. Using rigorous coupled-wave analysis, we studied the effects of various pseudo-random deterministic transverse feature distributions of ARSS on diffractive surfaces, analyzing the combined performance of the quarter-wave height nanoscale features, superimposed on a binary 50% duty cycle grating. Various distribution designs were investigated at 633nm wavelength for TE and TM polarization states at normal incidence, comparable to EMT fill fractions for a fused silica substrate in air. The results show differences in performance between ARSS transverse feature distributions, exhibiting better overall performance for subwavelength and near-wavelength scaled unit cell periodicities with short auto-correlation lengths, in comparison to equivalent effective permittivity designs that have less complicated profiles. We conclude that structured layers of quarter-wavelength depth and specific feature distributions can outperform conventional periodic subwavelength gratings as antireflection treatments on diffractive optical components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.