Abstract
In the cryogenic wind tunnel, cooling the circulating gas to cryogenic temperature by spraying liquid nitrogen (LN2) is an efficient way to increase the Reynolds number. The evaporation and motion of LN2 droplets in the high-speed gas flow is the critical process that determines the cooling rate, cooling capacity and the safe operation of the down-stream compressor. In this study, a numerical model of droplet motion and evaporation in high-speed gas flow is developed and verified against experimental data. The droplet evaporation rate, diameter and velocity are obtained during the evaporation process under different gas temperatures and flow velocities. The results show that the gas temperature has dominant influence on the droplet evaporation rate. High flow speed can increase droplet evaporation effectively at the beginning process. Evaporation of droplets with different diameters follows a similar trend. The absolute evaporation rate increases with the increase of droplet diameter while the relative evaporation amount is highest for the smallest droplet due to its high area-volume ratio. This numerical study provides insight for understanding the evaporation of LN2 droplets in high-speed gas flow and useful guidelines for the design of LN2 spray cooling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.