Abstract
This paper presents a first attempt at using the spectral moments method (SMM) to solve Maxwell's equations in twisted anisotropic media in the presence of defects. This numerical method, previously developed in condensed matter physics, allows computation of Green functions for very large systems. The dynamic matrix of the discretized system is built from the medium parameters. Green functions, calculated for a given source, representing a point source at infinity and given receiver, are developed as a continued fraction whose coefficients are related to the moments and directly computed from the dynamic matrix. In this study we compute the light transmitted through thin surface-stabilized ferroelectric liquid crystal cells with a chevron structure and a twisted director distribution. The efficiency and accuracy of the method are analysed by comparing the results obtained by SMM with the analytical solution obtained using the Jones matrix formalism. Finally, we apply SMM to compute the transmitted light with different director configurations. We show, by comparisons with experimental data, that the simplest director configuration is certainly the most probable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Modelling and Simulation in Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.