Abstract
Due to the feature of structure simplicity, lower production cost and maintenance ease, fixed pitch variable speed wind turbine has been widely used in non-grid-connected wind power systems. The calculation of wind turbine performance plays an important part in the design of wind turbines. Aerodynamic performance calculation is particularly significant in the fixed pitch stall-regulated wind turbine aerodynamic design process. To enhance the output power and power coefficient of wind turbine, active flow control technologies such as vortex generator are adopted in recent years. In this paper, a small wind turbine with air jet vortex generator (AJVG) on the blade tip is designed, and the output power of the wind turbine gets changed by operating the air jet. Computational Fluid Dynamics method is chosen to obtain aerodynamic characteristics of the wind turbine with/without AJVG and these features are furtherly integrated with speed control method to get speed control strategy under full-speed circumstance. It can be found after complete comparison that through setting AJVG at the blade tip, the new speed control features can help make it operate more stably in a wide range of wind speed without changing the existing wind turbine blades profiles and pitch angle. Also details of the flow field are obtained when solving the three-dimensional Navier-Stokes Equations. By analyzing the flow field of wind turbine with/without AJVG, the influence mechanism of the AJVG is demonstrated in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.